Predicting Delays and Cost Overruns in Construction Projects: A Machine Learning Approach
Predicción de Retrasos y Sobrecostos en Proyectos de Construcción: Un Enfoque de Machine Learning.
Barra lateral del artículo

Términos de la licencia (VER)

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Declaración del copyright
Los autores ceden en exclusiva a la Universidad EIA, con facultad de cesión a terceros, todos los derechos de explotación que deriven de los trabajos que sean aceptados para su publicación en la Revista EIA, así como en cualquier producto derivados de la misma y, en particular, los de reproducción, distribución, comunicación pública (incluida la puesta a disposición interactiva) y transformación (incluidas la adaptación, la modificación y, en su caso, la traducción), para todas las modalidades de explotación (a título enunciativo y no limitativo: en formato papel, electrónico, on-line, soporte informático o audiovisual, así como en cualquier otro formato, incluso con finalidad promocional o publicitaria y/o para la realización de productos derivados), para un ámbito territorial mundial y para toda la duración legal de los derechos prevista en el vigente texto difundido de la Ley de Propiedad Intelectual. Esta cesión la realizarán los autores sin derecho a ningún tipo de remuneración o indemnización.
La autorización conferida a la Revista EIA estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo en el Sistema Open Journal Systems de la Revista EIA, así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
Todos los contenidos de la Revista EIA, están publicados bajo la Licencia Creative Commons Atribución-NoComercial-NoDerivativa 4.0 Internacional
Licencia
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-NoDerivativa 4.0 Internacional
Contenido principal del artículo
Resumen
Traditionally, at a global level, construction projects face challenges during the planning and execution stages due to poorly organized scheduling and inadequate allocation of roles and resources. This results in significant differences between the projected timeline and what is actually carried out during construction.
This research suggests implementing a Machine Learning (ML) model using earned value analysis and project cash flows to anticipate potential deviations and future progress in a construction project’s schedule, as well as to predict possible cost overruns. The study employs six regression-based machine learning models: Ordinary Least Squares (OLS), Theil-Sen regression (TheilSen), RANSAC regression (RANSAC), Huber regression (Huber), k-nearest neighbors regression (KNNR), and random forest regression (RFR). Two datasets from residential construction projects were used; the first dataset contains 102 records for time estimation, and the second dataset includes 81 records for cash flow estimation. Additionally, the results obtained were compared with a previously proposed model based on Markov chains.
The predictive performance of the implemented ML models showed improved accuracy, increasing the R² compared to previously proposed models. The models achieved mean deviations of 2.09% in predicting future progress and 11.05% in forecasting construction delays, as well as 0.39% in predicting future cash flow and 3.61% in estimating construction cost overruns. This implementation can contribute to improving control, defining strategies, and planning future actions for cost and time management in construction projects, offering a promising approach to enhancing overall project efficiency.
Descargas
Detalles del artículo
Andres Felipe Restrepo Ramirez, Universidad Nacional de Colombia, Sede Medellín
Arquitecto constructor, especialista en inteligencia artificial. Docente ocasional, en la escuela de construcción de la Universidad Nacional de Colombia, sede Medellín. Su investigación se centra en la economía circular y la construcción sostenible, con énfasis en los materiales de construcción y su evaluación, además de la implementación de herramientas computacionales en el sector de la construcción.
Carlos Andres Rua-Machado, Universidad Nacional de Colombia, Sede Medellín
Arquitecto constructor. Especialista en Gestión Empresarial y magíster en Administración. Su especialidad es el área de Gestión de Proyectos. Docente tiempo completo y coordinador de la Especialización en Interventoría de proyectos y obras en la Universidad Nacional de Colombia, sede Medellín.Referencias (VER)
Babar, S., Thaheem, M. J., & Ayub, B. (2017). Estimated Cost at Completion: Integrating Risk into Earned Value Management. Journal of Construction Engineering and Management, 143(3). https://doi.org/10.1061/(asce)co.1943-7862.0001245
Ballard, G. (2000). Lean Project Delivery System (Revision 1). http://www.leanconstruction.org/pdf/WP8-LPDS.pdf
Ballard, G. (2008). The Lean Project Delivery System: An Update. www.leanconstructionjournal.org
Brioso, X., Murguia, D., & Urbina, A. (2017). Comparing three scheduling methods using BIM models in the Last Planner System. Organization, Technology and Management in Construction: An International Journal, 9(1), 1604–1614. https://doi.org/10.1515/otmcj-2016-0024
Camacol, & Sena. (2015). Proyecto de investigación del sector de la construcción de edificación en Colombia.
CII. (2013). Four-casting for Early and Accurate Predictability. Implementation Resource 291-2.
CIRIA. (2013). Implementing Lean in construction : Overview of CIRIA guides and a brief introduction to Lean.
Cooke-Davies, T. (2011). Aspects of complexity: Managing Projects in a complex world (First). Project Management Institute.
Gantt, H. L. (1910). Work, Wages and Profit. New. In The Engineering Magacine (Ed.), Industrial Management Library (Second Edi). http://www.nber.org/papers/w16019
Gell-Mann, M. (1995). El quark y el jaguar: Aventuras en lo simple y lo complejo (Tusquets, Ed.).
Government Accountability Office. (2015). Schedule Assessment Guide: Best Practices for Project Schedules.
Grau, D., & Back, W. E. (2015). Predictability Index: Novel Metric to Assess Cost and Schedule Performance. Journal of Construction Engineering and Management, 141(12), 1–8. https://doi.org/10.1061/(asce)co.1943-7862.0000994
Grau, D., Back, W. E., & Aguilar, G. M. (2013). Four-casting for early and accurate predictability. Implementation Resource, 291–292.
Hermano, V., & Martín-Cruz, N. (2019). Expanding the Knowledge on Project Management Standards: A Look into the PMBOK® with Dynamic Lenses. 19–34. https://doi.org/10.1007/978-3-319-92273-7_2
IBM. (n.d.). IBM SPSS Statistics System. Retrieved August 11, 2023, from https://www.ibm.com/docs/es/spss-statistics/saas?topic=regression-nonlinear
Jaafari, A., Pazhouhan, I., & Bettinger, P. (2021). Machine learning modeling of forest road construction costs. Forests, 12(9). https://doi.org/10.3390/f12091169
Kenley, R., & Seppänen, O. (2009). Location-based Management of Construction Projects: Part of a New Typology for Project Scheduling Methodologies. In Proceedings - Winter Simulation Conference. https://doi.org/10.1109/WSC.2009.5429669
Kerzner, H. (2022). Innovation Project Management: Methods, Case Studies, and Tools for Managing Innovation Projects. Wiley. https://books.google.com.co/books?id=cWedEAAAQBAJ
Koskela, L., Ferrantelli, A., Niiranen, J., Pikas, E., & Dave, B. (2019). Epistemological Explanation of Lean Construction. Journal of Construction Engineering and Management, 145(2), 1–10. https://doi.org/10.1061/(asce)co.1943-7862.0001597
Koskela, L. J., Ballard, G., & Tommelein, I. (2002). The foundations of lean construction. https://www.researchgate.net/publication/28578914
Marsh, E. R. (1975). The Harmonogram of Karol Adamiecki. The Academy of Management Journal, 18(2), 358–364. https://doi.org/10.2307/255537
Mohamed, H. H., Ibrahim, A. H., & Soliman, A. A. (2021). Toward reducing construction project delivery time under limited resources. Sustainability (Switzerland), 13(19), 1–17. https://doi.org/10.3390/su131911035
Morin, E. (1990). Introducción al pensamiento complejo (Gedisa, Ed.; 10th, 2011th ed.).
Olivieri, H., Seppänen, O., & Denis Granja, A. (2018). Improving workflow and resource usage in construction schedules through location-based management system (LBMS). Construction Management and Economics, 36(2), 109–124. https://doi.org/10.1080/01446193.2017.1410561
Paterson, S. J. C. (2017). Developing a Scoring Model using the GAO’s Schedule Assessment Best Practices: Vol. VI. www.pmworldlibrary.net
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., & Louppe, G. (2012). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12.
Pellerin, R., & Perrier, N. (2019). A review of methods, techniques and tools for project planning and control. International Journal of Production Research, 57(7), 2160–2178. https://doi.org/10.1080/00207543.2018.1524168
PMI. (2016). Construction Extension to the PMBOK® Guide (Inc. Project Management Institute, Ed.; 2nd ed.).
PMI. (2017). Guía de los fundamentos para la dirección de proyectos (Guía del PMBOK) (Inc. Project Management Institute, Ed.; Sexta Edic). Project Management Institute, Inc.
PMI. (2021). A guide to the project management body of knowledge (PMBOK guide) (Seventh ed). Project Management Institute.
Remington, K., & Pollack, J. (2016). Tools for Complex Projects (Vol. 1). Routledge.
Rúa-Machado, C. A. (2022). Gestión de la construcción para una era digital. Tecnología, transformación y cooperación como retos del ejercicio pedagógico en la gestión del diseño y la construcción de edificios. In Universidad Nacional de Colombia Sede Medellín (Ed.), Construcción Temas y reflexiones (pp. 121–155). Facultad de Arquitectura.
Rudeli, N., Santilli, A., Puente, I., & Viles, E. (2017). Statistical Model for Schedule Prediction: Validation in a Housing-Cooperative Construction Database. Journal of Construction Engineering and Management, 143(11). https://doi.org/10.1061/(asce)co.1943-7862.0001396
Rudeli, N., Viles, E., & Santilli, A. (2018). A construction management tool : determining a projects schedule typical behaviors using cluster analysis. World Academy of Science, Engineering and Technology International Journal of Civil and Environmental Engineering Vol:12, No:5, 2018, 12(5), 485–492. https://doi.org/10.1999/1307-6892/10008879
Sawhney, A., Reley, M., & Irizarry, J. (2020). Construction 4.0. An Innovation Platform for the Built Environment. In Routledge. Routledge is an imprint of the Taylor & Francis Group, an informa business ©.
Sepasgozar, S. M. E., Karimi, R., Shirowzhan, S., Mojtahedi, M., Ebrahimzadeh, S., & McCarthy, D. (2019). Delay causes and emerging digital tools: A novel model of delay analysis, including integrated project delivery and PMBOK. In Buildings (Vol. 9, Issue 9). https://doi.org/10.3390/buildings9090191
Serna-Gutiérrez, E. (2023). Methodological proposal for planning and control for construction projects based on a computer complement. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/84031
Theingi Aung, Liana, S. R., Htet, A., & Amiya Bhaumik. (2023). Using Machine Learning to Predict Cost Overruns in Construction Projects. Journal of Technology Innovations and Energy, 2(2), 1–7. https://doi.org/10.56556/jtie.v2i2.511
Tsegaye, M. (2019). Efficient Procedure to Scheduling Construction Projects at the Planning Phase. Baltic Journal of Real Estate Economics and Construction Management, 7, 60–80. https://doi.org/10.2478/bjreecm-2019-0004
Vanhoucke, M. (2012). Project Management with Dynamic Scheduling (pp. 11–35). https://doi.org/10.1007/978-3-642-25175-7_2
Vanhoucke, M. (2013). Project Management with Dynamic Scheduling. In Project Management with Dynamic Scheduling. https://doi.org/10.1007/978-3-642-40438-2
WEF. (2020). The Global Risks Report 2020. www.weforum.org
WEF, Rodriguez de Almeida, P., Solas, M., Renz, A., Bühler, M. M., Gerbert, P., Castagnino, S., & Rothballer, C. (2016). Shaping the Future of Construction: A Breakthrough in Mindset and Technology (World Economic Forum). https://doi.org/10.13140/RG.2.2.21381.37605
Wu, C. L., & Chau, K. W. (2013). Prediction of Rainfall Time Series Using Modular Soft Computing Methods. Engineering Applications of Artificial Intelligence, 26(3), 1–20.
Yazıcıoğlu, E., & Kanoglu, A. (2022). A project procurement model enabling competition by design concept by integrating performance-based assessment (PBA), process-based estimating (PBE), and cost network modeling (CNM) tools. 12, 65–92. https://doi.org/10.14424/ijcscm120222-65-92
Zowghi, M., Haghighi, M., & Zohouri, B. (2011). Cost and Schedule Control Approach in Fuzzy Environment. Science Academy Publisher International Journal of Research and Reviews in Information Sciences, 1, 2046–6439.