Transformación Digital de la Gestión del Agua: Avances en Ciudades de Países en Desarrollo
Digital Transformation of Water Management: Advances in Cities of Developing Countries
Barra lateral del artículo

Términos de la licencia (VER)

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Declaración del copyright
Los autores ceden en exclusiva a la Universidad EIA, con facultad de cesión a terceros, todos los derechos de explotación que deriven de los trabajos que sean aceptados para su publicación en la Revista EIA, así como en cualquier producto derivados de la misma y, en particular, los de reproducción, distribución, comunicación pública (incluida la puesta a disposición interactiva) y transformación (incluidas la adaptación, la modificación y, en su caso, la traducción), para todas las modalidades de explotación (a título enunciativo y no limitativo: en formato papel, electrónico, on-line, soporte informático o audiovisual, así como en cualquier otro formato, incluso con finalidad promocional o publicitaria y/o para la realización de productos derivados), para un ámbito territorial mundial y para toda la duración legal de los derechos prevista en el vigente texto difundido de la Ley de Propiedad Intelectual. Esta cesión la realizarán los autores sin derecho a ningún tipo de remuneración o indemnización.
La autorización conferida a la Revista EIA estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo en el Sistema Open Journal Systems de la Revista EIA, así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
Todos los contenidos de la Revista EIA, están publicados bajo la Licencia Creative Commons Atribución-NoComercial-NoDerivativa 4.0 Internacional
Licencia
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-NoDerivativa 4.0 Internacional
Contenido principal del artículo
Resumen
Este estudio analiza el efecto que tienen las iniciativas de agua digital sobre la gestión hídrica y la sostenibilidad urbana en ciudades de Latinoamérica y África. En un marco en el que coexisten problemáticas como el cambio climático y el incremento poblacional, estas tecnologías se presentan como herramientas clave para la optimización de los recursos hídricos. El objetivo principal es verificar como distintas soluciones digitales pueden transformar los sistemas de gestión hídrica y la sostenibilidad urbana, mediante sensores inteligentes, sistemas de monitorización, tecnologías para el control de la calidad de las aguas residuales, agua lluvia, distribución y gestión en situaciones de crisis. Para ello, se ha realizado una revisión bibliográfica sistematizada, que se ha integrado con un análisis de datos encontrados en estudios desarrollados en ciudades con distintos niveles de infraestructura tecnológica y acceso a los recursos hídricos. Los resultados indican que las tecnologías digitales tienen el potencial de disminuir de forma notable las pérdidas de agua, mejorar el funcionamiento operativo de los sistemas y aumentar la capacidad de respuesta ante la crisis. Las ciudades que tienen una infraestructura tecnológica más avanzada obtienen resultados mejores, pero al mismo tiempo se identifican barreras como la exigencia de inversión en investigación y desarrollo, estabilidad política y acceso a la financiación. Se concluye que la incorporación de las tecnologías digitales dentro de las políticas de gestión hídrica favorece la sostenibilidad y la resiliencia urbana ante los retos globales que tienen que afrontar el cambio climático o el crecimiento poblacional. Este estudio resalta y fomenta iniciativas digitales pensadas para ser replicables y flexibles en distintas regiones, reduciendo su impacto y maximizando su alcance.
Descargas
Detalles del artículo
Referencias (VER)
Abdel-Fattah, M. K.; Abd-Elmabod, S. K.; Aldosari, A. A.; Elrys, A. S.; Mohamed, E. S. (2020). Multivariate analysis to assess irrigation water quality: a case study of the Bahr Mouise canal, Eastern Nile Delta. Water, 12(9), 2537. https://doi.org/10.3390/w12092537
Abdeljebbar, N.; Moussaid, L.; Medromi, H. (2019). Smart water management: Pillars and technologies. En: Y. Farhaoui & L. Moussaid (eds.), ICBDSDE 2018: Proceedings of the International Conference on Big Data, Smart Cities and Digital Economy (pp. 7-14). Springer. https://doi.org/10.1007/978-3-030-12048-1_2
Alamoudi, A.; Abdallah, S.; Emad, M. (2023). Stormwater management modeling and machine learning for flash flood susceptibility prediction in Wadi Qows, Saudi Arabia. Hydrological Research Letters, 17(62). https://doi.org/10.3178/hrl.17.62
Araújo de Brito, Y. M.; Rufino, A.; Braga, C. F. C.; Alexandra, I.; Mulligan, K. (2021). The Brazilian drought monitoring in a multi-annual perspective. Environmental Monitoring and Assessment, 193(31). https://doi.org/10.1007/s10661-020-08839-5
Arias-Rodriguez, F. J.; Méndez-Sánchez, C.; Mendoza, I. (2020). Monitoring water quality of Valle de Bravo reservoir, Mexico, using entire lifespan of MERIS data and machine learning approaches. Remote Sensing, 12(10), 1586. https://doi.org/10.3390/rs12101586
Ascenção, É. S.; Marinangelo, F. M.; Dias, E. M.; Almeida, C. F. M.; Kagan, N. (2023). Applications of Smart Water Management Systems: A literature review. Water, 15(19), 3492. https://doi.org/10.3390/w15193492
Baptista, L.; Morais, R.; Oliveira, C. (2023). Rooftop water harvesting for managed aquifer recharge and flood mitigation in tropical cities: Towards a strategy of co-benefit evaluations in João Pessoa, northeast Brazil. Journal of Environmental Management, 323, 118034. https://doi.org/10.1016/j.jenvman.2023.118034
Bonilla, C.; Brentan, B.; Montalvo, I.; Ayala-Cabrera, D.; Izquierdo, J. (2023). Digitalization of water distribution systems in small cities, a tool for verification and hydraulic analysis: A case study of Pamplona, Colombia. Water, 15(21), 3824. https://doi.org/10.3390/w15213824
Bouhout, M.; Allam, S.; Abidi, A. (2024). Spatial variability of nitrate leaching and risk assessment of nitrate contamination in the Ghiss-Nekor alluvial aquifer system (Northeastern Morocco) through Disjunctive Kriging. Science of the Total Environment, 867, 02009. https://doi.org/10.1016/j.sciaf.2023.e02009
Bouramdane, M.; Ayat-Allah, H. (2023). Optimal water management strategies: Paving the way for sustainability in smart cities. Smart Cities, 6(5), 2849–2882. https://doi.org/10.3390/smartcities6050128
Caro-Camargo, C. A.; Bladé i Castellet, E.; Soler, D. G.; Hernández, J. D. (2023). Protocol to monitor water governance based on indicators for rural basins. Ingeniería e Investigación, 43(1), e90309. https://doi.org/10.15446/ing.investig.90309
Dantas, M. S.; de Oliveira, J. C.; Pinto, C. C.; Oliveira, S. C. (2020). Impact of fecal contamination on surface water quality in the São Francisco River watershed in Minas Gerais, Brazil. Water and Health Journal, 18(1), 48–56. https://doi.org/10.2166/wh.2019.153
de Souza, T. C.; de Andrade, M. F.; Silva, P. (2021). The Brazilian surface freshwater framework in union-dominated rivers: Challenges and prospects for water quality management. Revista Brasileira de Ciências Ambientais, 39, 507–518. https://doi.org/10.5327/Z2176-947820200707
Eid, E. M.; Shaltout, K. H. (2017). Growth dynamics of water hyacinth (Eichhornia crassipes): A modeling approach. Rendiconti Lincei. Scienze Fisiche e Naturali, 28(1), 169–181. https://doi.org/10.1007/s12210-016-0589-4
El-Rawy, M.; Haraz, O. M.; Morsy, M. A.; Saad, W. (2021). The role of smart technology to enhance date productivity and water efficiency in Middle Eastern and North African countries: A review of innovative sustainable solutions. Euro-Mediterranean Journal for Environmental Integration, 6, 67. https://doi.org/10.1007/s41207-021-00274-3
Farreny, R.; Rieradevall, J.; Barbassa, A. P.; Teixeira, B.; Gabarrell, X. (2013). Indicators for the commercial management of urban water: The cases of commercial parks in Spain and Brazil. Urban Water Journal, 10(4). https://doi.org/10.1080/1573062X.2012.716855
Finkler, N. R.; Cocconi, J.; Bortolin, T. A.; Mendes, L. A.; Schneider, V. E. (2018). Water quality monitoring in urban basins as support for water resources management: A case study from southern Brazil. International Journal of Environmental Impacts, 1(3), 298–311. https://doi.org/10.2495/EI-V1-N3-298-311
Fouzi, T. A.; Youness, M.; Bouchra, L.; Ali, B. (2020). Spatio-temporal typology of the physico-chemical parameters of a large North African river: The Moulouya and its main tributaries (Morocco). African Journal of Aquatic Science, 45(4), 431–441. https://doi.org/10.2989/16085914.2020.1727832
Furtado, S.; Lima, L.; Silveira, R. (2021). Evaluation of reduction of external load of total phosphorus and total suspended solids for rehabilitation of urban lakes. Journal of Environmental Management, 113339. https://doi.org/10.1016/j.jenvman.2021.113339
Gonçalves, A. F.; Silva, M.; Pereira, A. (2020). An IoT-based framework for smart water supply systems management. Future Internet, 12(7), 114. https://doi.org/10.3390/fi12070114
Guermazi, E.; Milano, M.; Reynard, E.; Zairi, M. (2019). Impact of climate change and anthropogenic pressure on groundwater resources in arid environments. Mitigation and Adaptation Strategies for Global Change, 24(1), 73–92. https://doi.org/10.1007/s11027-018-9797-9
Hamad, S. M.; Ahweejb, Y. A. (2020). Evaluation of the Nubian Sandstone Aquifer System (NSAS) in Al Kufra Oasis, Southeast Libya. Desalination and Water Treatment, 177, 306–316. https://doi.org/10.5004/dwt.2020.25503
Hemdan, E. E.-D.; Essa, Y. M.; Shouman, M.; El-Sayed, A.; Moustafa, A. N. (2023). An efficient IoT based smart water quality monitoring system. Multimedia Tools and Applications, 82(28), 28827–28851. https://doi.org/10.1007/s11042-023-14504-z
Hu, T.; Mallick, K.; Hulley, G. C.; Perez Planells, L.; Gottsche, F. M.; Schlerf, M.; Hitzelberger, P.; Didry, Y.; Szantoi, Z.; Alonso, I.; Sobrino, J. A.; Skoković, D.; Roujean, J.-L.; Boulet, G.; Gamet, P.; Hook, S. (2022). Continental-scale evaluation of three ECOSTRESS land surface temperature products over Europe and Africa: Temperature-based validation and cross-satellite comparison. Remote Sensing of Environment, 282, 113296. https://doi.org/10.1016/j.rse.2022.113296
Jurado Zavaleta, M. A.; Alcaraz, M. R.; Penaloza, L. G.; Boemo, A.; Cardozo, A.; Tarcaya, G.; Azcarate, S. M.; Goicoechea, H. C. (2021). Chemometric modeling for spatiotemporal characterization and self-depuration monitoring of surface water assessing the pollution sources impact of northern Argentina rivers. Microchemical Journal, 162, 105841. https://doi.org/10.1016/j.microc.2020.105841
Kessasra, M.; Kheira, H.; Mustapha, A. (2017). Combined hydrogeological and nitrate modelling to manage water resources of the Middle Soummam Aquifer, Northeast of Algeria. Arabian Journal of Geosciences, 10(12), 255. https://doi.org/10.1007/s12517-017-3160-4
Leta, M. K.; Demissie, T. A.; Tränckner, J. (2021). Hydrological responses of the watershed to historical and future land use cover change dynamics in the Nashe watershed, Ethiopia. Water, 13(17), 2372. https://doi.org/10.3390/w13172372
Lima, M. L.; Romanelli, A.; Calderon, G.; Massone, H. E. (2019). Multi-criteria decision model for assessing groundwater pollution risk in the urban-rural interface of Mar del Plata City (Argentina). Environmental Monitoring and Assessment, 191, 347. https://doi.org/10.1007/s10661-019-7485-1
Madonsela, B.; Koop, S.; van Leeuwen, K.; Carden, K. (2019). Evaluation of water governance processes required to transition towards water sensitive urban design—An indicator assessment approach for the city of Cape Town. Water, 11(2), 292. https://doi.org/10.3390/w11020292
Marín Celestino, A. E.; Ramos Leal, J. A.; Martínez Cruz, D. A.; Tuxpan Vargas, J.; De Lara Bashulto, J.; Morán Ramírez, J. (2019). Identification of the hydrogeochemical processes and assessment of groundwater quality, using multivariate statistical approaches and water quality index in a wastewater irrigated region. Water, 11(8), 1702. https://doi.org/10.3390/w11081702
Mateus, C.; Guerrero, C. A.; Quezada, G.; Lara, D.; Ochoa-Herrera, V. (2019). An integrated approach for evaluating water quality between 2007–2015 in Santa Cruz Island in the Galapagos Archipelago. Water, 11(5), 937. https://doi.org/10.3390/w11050937
Mazari-Hiriart, M.; Arceo, S. (2019). Challenges and opportunities on urban water quality in Mexico City. Frontiers in Environmental Science, 7, 169. https://doi.org/10.3389/fenvs.2019.00169
Mendoza-Espinosa, L. G.; Daesslé, L. W. (2018). Consolidating the use of reclaimed water for irrigation and infiltration in a semi-arid agricultural valley in Mexico: Water management experiences and results. Journal of Water, Sanitation and Hygiene for Development, 8(2), 211–222. https://doi.org/10.2166/washdev.2018.021
Mendoza-Gomez, M.; Quintana, J.; Garzon, A. (2022). Water Supply Management Index: León, Guanajuato, Mexico. Water, 14(6), 919. https://doi.org/10.3390/w14060919
Mezni, H.; Driss, M.; Boulila, W.; Ben Atitallah, S.; Sellami, M.; Alharbi, N. (2022). SmartWater: A service-oriented and sensor cloud-based framework for smart monitoring of water environments. Remote Sensing, 14(4), 922. https://doi.org/10.3390/rs14040922
More, S. J.; Patil, S. G.; Talawadekar, P.; Chitnis, R.; Kondle, M. R. (2023). Intelligent mine water management tools—eMetsi and machine learning GUI. Mine Water and the Environment, 42(2), 345–356. https://doi.org/10.1007/s10230-023-00917-7
Nunes, G.; Minoti, R. T.; Koide, S. (2020). Mathematical modeling of watersheds as a subsidy for determining the water balance of reservoirs: The case of Lake Paranoá, Federal District, Brazil. Hydrology, 7(4), 85. https://doi.org/10.3390/hydrology7040085
Oertlé, E.; Mueller, S. R.; Choukr-Allah, R.; Jaouani, A. (2020). Decision support tool for water recovery beyond technical considerations: Case studies from Egypt, Morocco, and Tunisia. Integrated Environmental Assessment and Management, 16(1), 46–56. https://doi.org/10.1002/ieam.4303
Passos, J. B. C.; Campos, J. A.; Teixeira, D. B. S.; Lima, R. P. C.; Silva, D. D.; Fernandes-Filho, E. I. (2021). Multivariate statistics for spatial and seasonal quality assessment of water in the Doce River basin, Southeastern Brazil. Environmental Monitoring and Assessment, 193(125). https://doi.org/10.1007/s10661-021-08918-1
Pereao, D.; Gonzalez, F.; Rojas, E. (2021). Effects of municipal wastewater treatment plant effluent quality on aquatic ecosystem organisms. Journal of Environmental Science and Health, Part A, 56(14), 1435–1446. https://doi.org/10.1080/10934529.2021.2009730
Silva, C. O. F.; Manzione, R. L.; Albuquerque Filho, J. L. (2018). Large-scale spatial modeling of crop coefficient and biomass production in agroecosystems in Southeast Brazil. Horticulturae, 4(44). https://doi.org/10.3390/horticulturae4040044
Silva, T. F. G.; Beltrán, D.; Nascimento, N. O.; Rodríguez, J. P.; Mancipe-Muñoz, N. (2023). Assessing major drivers of runoff water quality using principal component analysis: A case study from a Colombian and a Brazilian catchments. Urban Water Journal, 20(10), 1555–1567. https://doi.org/10.1080/1573062X.2022.2029913
Siqueira, R. C.; Moura, P. M.; Silva, T. F. G. (2019). Methodology for the construction of an urban flood hazard chart. SciELO Brasil. https://doi.org/10.1590/2318-0331.241920180125
Souza, F. P.; Costa, M. E. L.; Koide, S. (2019). Hydrological modeling and assessment of detention ponds to improve urban drainage systems and water quality. Water, 11(8), 1547. https://doi.org/10.3390/w11081547
Teixeira, L.; Sanches, F.; Gomes, R. (2016). Relationship between turbidity and suspended sediment concentration from a small hydrographic basin in Santa Maria (Rio Grande do Sul, Brazil). International Journal of River Basin Management, 14(4), 341–349. https://doi.org/10.1080/15715124.2016.1198911
Temesgen, T. (2023). Water scarcity management system and challenges in the water-scarce area of the Haramaya watershed, Eastern Ethiopia. Water Resources and Irrigation Management, 12(1–3), 54–63. https://doi.org/10.19149/wrim.v12i1-3.3143
The World Bank Group. (2020). Doing Business: Measuring business regulations. Recuperado de https://www.doingbusiness.org/en/rankings
Transparency International. (2020). Corruption Perceptions Index 2020. Recuperado de https://www.transparency.org
Tsuji, T. M.; Costa, M. E. L.; Koide, S. (2019). Monitoring and modeling diffuse pollution in small urban watersheds of Brazil’s Cerrado. Water Science & Technology, 79(10), 1912–1922. https://doi.org/10.2166/wst.2019.190
UNESCO Institute for Statistics. (2022). Gross domestic expenditure on R&D (GERD) as a percentage of GDP. Recuperado de http://uis.unesco.org
United Nations Development Programme (UNDP). (2020). Human Development Report 2020. Recuperado de http://hdr.undp.org
Valenzuela-Morales, F.; Alvarado, R.; González, M. (2023). Climatic and socioeconomic regionalization of the meteorological drought in Mexico using a predictive algorithm. Natural Hazards. https://doi.org/10.1007/s11069-023-05908-z
Verma, A.; Chaurasia, D.; Singh, S. (2019). Security and privacy in smart city applications and services: Opportunities and challenges. En Smart Cities: Issues and Challenges (pp. 3–20). Springer. https://doi.org/10.1007/978-3-030-16837-7_1
World Bank. (2020). Renewable internal freshwater resources per capita (cubic meters). Recuperado de https://data.worldbank.org
World Economic Forum. (2020). Global Competitiveness Report 2020. Recuperado de https://www.weforum.org/reports
Yale Center for Environmental Law & Policy. (2020). 2020 Environmental Performance Index. Recuperado de https://epi.yale.edu