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ABSTRACT

The use of self-tapping screws with continuous threads in the joint area as a reinforcement to avoid 
splitting of timber members is studied. A theoretical model is developed to calculate the stress distribution 
around a pin-loaded hole in a timber joint, to predict brittle failure modes in bolted connections and to cal-
culate the load in the reinforcing screws. Laboratory experiments on reinforced and non-reinforced timber 
joints with 15,9-mm bolts have shown good agreement with the model predictions. 

KEYWORDS: timber joints; brittle failure mode; reinforcement perpendicular-to-grain; analytical 
model.

RESUMEN

En este artículo se estudia el uso de tornillos autoperforantes como refuerzo para evitar rupturas 
frágiles en uniones de madera. Se presenta un modelo teórico para calcular la distribución de esfuerzos 
alrededor de un perno en una unión de madera, predecir las rupturas frágiles y evaluar el esfuerzo en los 
tornillos autoperforantes. Los experimentos de laboratorio con uniones de madera, con pernos de 15,9 mmexperimentos de laboratorio con uniones de madera, con pernos de 15,9 mm 
de diámetro, reforzadas y no reforzadas mostraron la efectividad del modelo teórico propuesto. 

PALABRAS CLAVE: uniones de madera; ruptura frágil; refuerzo perpendicular a las fibras; modelo 
analítico.
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1.  INTRODUCTION

It is known that the problem of mechanically 
fastened joints in timber is difficult to analyze because 
of the anisotropic and heterogeneous nature of the 
material. Since there are no available analytical solu-
tions associated with loaded holes in wood, current 
design procedures for mechanical fasteners are based 
on approximate or empirical solutions and exist only 
for the simplest types of joints.

Due to the importance of the problem, bolted 
joint has been studied by using numerical and ex-
perimental [4, 7-10, 21, 22, 26, 29, 31, 32] methods 
in the past.

Patton-Mallory et al. [27] developed and 
evaluated a three-dimensional numerical model of 
a bolted wood connection loaded parallel to grain. 
Nonlinear parallel to grain compression of wood and 
degradation of shear stress stiffness were described 
using a trilinear stress-strain relationship. The con-
nection model also accounted for an elastic-perfectly 
plastic steel pin, oversized hole, and a changing con-
tact surface at the pin-hole interface. The numerically 
predicted load-displacement curves were stiffer than 
the experimental curves.

In Kharouf et al. [19], a nonlinear numerical 
model is developed to study the behaviour of timber 
connections with relatively low member thickness-
to-fastener diameter ratios. A plasticity-based com-
pressive constitutive material model is proposed to 
represent wood as elastoplastic orthotropic material 
in regions of biaxial compression. Linear elastic or-
thotropic material response was used otherwise with 
maximum stresses taken as the basis for predicting 
failure criteria. Nonlinear geometry due to increased 
sliding contact between the bolt and the hole is mod-
elled using the Lagrange multiplier algorithm. 

Jorissen [18] attempted to account for brittle 
fracture in timber joints using the European Yield 
Model by calculating stress distributions along poten-
tially critical load paths within the wood member. The 
average stresses for tension perpendicular-to-grain 

and for shear stresses were compared with those 
from a fracture mechanics model to predict ultimate 
strength. Jorissen [18] found, however, that the tensile 
stresses perpendicular-to-grain were underestimated 
and, to allow crack initiation to be detected by the 
fracture theory, added an assumed peak stress perpen-
dicular-to-grain at the bolthole location. The joint area 
including the stable crack propagation was modelled 
as a beam on elastic foundation. This assumption limits 
the robustness of the model. 

Moses [23] and Moses and Prion [24] proposed 
a material model that is based on orthotropic elas-
ticity, anisotropic plasticity for non-linear behaviour 
of wood in compression, and the Weibull’s weakest 
link theory to predict brittle failure. Linear elastic 
behaviour was assumed for tension and shear. The 
weakest link theory provides a probabilistic approach 
to predicting the failure based on the stressed volume 
of wood and can be used for cases when the ultimate 
strength of the single bolt connection is governed 
by brittle failure (such as shear and tension per-
pendicular-to-grain). This three-dimensional model 
was implemented using finite element analysis for a 
single-bolt connection specimen. 

Regrettably, experiments and numerical 
methods do not produce open-form solutions as a 
result of the high amount of possible combinations of 
involved parameters. In contrast, it would be practi-
cal to have equations developed using the detailed 
analytical basis.

The objective of this paper is to present 
a comprehensive analytical method capable of 
predicting the ultimate strength of reinforced and 
non-reinforced timber bolted joints. The method of 
complex functions [20, 25] for anisotropic materials 
is used to obtain the stress distributions. The solution 
is compared directly to results of laboratory tests. 

This study examined as well the technical feasi-
bility of reinforcing the wood at bolted joints with self-
tapping screws. The purpose of local reinforcements 
in a joint is to improve its load-carrying capacity and 
stiffness and to improve its ductility. 
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This paper reports test results of various con-
nection configurations with reduced end distances, 
with and without reinforcement. 

2.  STRESS DISTRIBUTION 
AROUND A PIN-LOADED 
HOLE IN AN ELASTICALLY 
ORTHOTROPIC PLATE

In this paper, the stress distribution around a 
pin-loaded hole in an elastically orthotropic plate is 
investigated for the main member of a double-lap 
mechanically fastened joint. Consider a homoge-
neous, orthotropic plate of width b with a circular 
hole of diameter d as is shown in Fig. 1. Let the x- 
and y-axes be the principal axes of the plate, and the 
direction of the pin load F be the same as the positive 
y-axis. The hole is at a distance e from the free end 
of the plate. The clearance between the pin and the 
hole is denoted as λ. 

The pin-hole problem is essentially a two-
body-contact problem. In order to determine contact 
surfaces and stresses the inverse method is used, a 
value for the contact angle between the bolt and 
the timber is assumed and the corresponding load 
is calculated. The process is repeated for a series 
of prescribed contact angles. The assumption of a 
value for the contact angle has the advantage of 
simplicity.

It is assumed that the hole is loaded without 
friction on a portion of its edge by an infinitely rigid 
pin of diameter d. The loading pin is represented 
by compressive edge loads distributed around the 
hemispherical contact area. The resulting force F 
equals 2pRt, where p is the average bearing stress 
according to the classical definition, R is the radius 
of the hole and t is the unit thickness of the plate. 
The analytical model with its boundary and loading 
conditions is shown in Fig. 2.

The method of complex functions (Lekhnitskii 
[20], Muskhelishvili [25]) for anisotropic materials 
is used to obtain the stress distributions. For plane 
stress situations in orthotropic plates the stresses can 
be expressed by means of derivatives of two stress 
complex functions ( )ϕ 1z  and ( )Ψ 2z :

[32] Zhang K., Ueng C. Stresses around a pin-loaded hole in orthotropic plates with 
arbitrary loading direction. Composite Structures 1985; 3:119-143. 

Fig. 1. Double-lap mechanical joint 

Fig. 2. Geometry for the joint and boundary conditions 

[32] Zhang K., Ueng C. Stresses around a pin-loaded hole in orthotropic plates with 
arbitrary loading direction. Composite Structures 1985; 3:119-143. 

Fig. 1. Double-lap mechanical joint 

Fig. 2. Geometry for the joint and boundary conditions 

Figure 1. Double-lap mechanical joint

Figure 2. Geometry for the joint and boundary 
conditions
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In this manner, stress functions ( )ϕ 1z and ( )Ψ 2z  are completely determined. Evidently, 
with this analytical method, it is possible to estimate the stresses in any point of the 
orthotropic joint and to show the stress distribution around a pin-loaded hole in an elastically 
orthotropic plate. The effect of material properties and geometry of the joint can be 
determined analytically. Although it was developed for orthotropic composite materials, the 
presented approach is equally effective for analyzing mechanical joints involving solid wood 
and wood-based composites. 

3. BRITTLE FAILURE OF A BOLTED TIMBER JOINT AND IMPROVING LOAD-
CARRYING CAPACITY 

The proposed model can be used to determine analytically the points of stress concentrations 
in the zone of contact between the fastener and the timber and predict the brittle modes of 
failure in dowel-type timber joints.  

Let’s consider, for instance, the stress distributions calculated for a wood element of a unit 
thickness t and width b = 4d assuming the elastic properties of red spruce shown in Table 1. 
Table 2 summarizes the peak stresses  xy and  x at corresponding angles   for red spruce 
calculated in this example. The calculated stresses are normalized by the average bearing 
stress p = F/d and are shown along the hole edge as a function of angle    (as defined in Fig. 
3).

Avoiding completely tension perpendicular-to-grain and shear is not ever possible. If not 
placed properly, bolts may cause undesirable brittle failure in timber due to excessive tension 
perpendicular-to-grain. A possibility to avoid splitting and to guarantee a plastic joint 
behaviour is to reinforce the timber in the joint area. The tension stresses are then transferred 
by a reinforcement perpendicular-to-grain. Known methods to prevent splitting of timber 
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where

  (19)

  (20)

  (21)

In this manner, stress functions ( )ϕ 1z  and 
( )Ψ 2z  are completely determined. Evidently, 

with this analytical method, it is possible to estimate 
the stresses in any point of the orthotropic joint and 
to show the stress distribution around a pin-loaded 
hole in an elastically orthotropic plate. The effect of 
material properties and geometry of the joint can be 
determined analytically. Although it was developed 
for orthotropic composite materials, the presented 
approach is equally effective for analyzing mechani-
cal joints involving solid wood and wood-based 
composites.

3.  BRITTLE FAILURE OF A 
BOLTED TIMBER JOINT 
AND IMPROVING LOAD-
CARRYING CAPACITY

The proposed model can be used to determine 
analytically the points of stress concentrations in the 
zone of contact between the fastener and the timber 
and predict the brittle modes of failure in dowel-type 
timber joints. 

Let’s consider, for instance, the stress distribu-
tions calculated for a wood element of a unit thickness 
t and width b = 4d assuming the elastic properties of 
red spruce shown in Table 1. Table 2 summarizes the 
peak stresses τxy and σx at corresponding angles θ for 
red spruce calculated in this example. The calculated 
stresses are normalized by the average bearing stress 
p = F/d and are shown along the hole edge as a func-
tion of angle θ (as defined in Fig. 3).

Avoiding completely tension perpendicular-
to-grain and shear is not ever possible. If not placed 
properly, bolts may cause undesirable brittle failure 
in timber due to excessive tension perpendicular-
to-grain. A possibility to avoid splitting and to guar-
antee a plastic joint behaviour is to reinforce the 
timber in the joint area. The tension stresses are then 
transferred by a reinforcement perpendicular-to-
grain. Known methods to prevent splitting of timber 
members are reinforcements of the joint area with 
glued-on wood-based panels, pressed-on punched 
metal plates or glass fibre reinforcements. If wood 
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where,
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In this manner, stress functions ( )ϕ 1z and ( )Ψ 2z  are completely determined. Evidently, 
with this analytical method, it is possible to estimate the stresses in any point of the 
orthotropic joint and to show the stress distribution around a pin-loaded hole in an elastically 
orthotropic plate. The effect of material properties and geometry of the joint can be 
determined analytically. Although it was developed for orthotropic composite materials, the 
presented approach is equally effective for analyzing mechanical joints involving solid wood 
and wood-based composites. 

3. BRITTLE FAILURE OF A BOLTED TIMBER JOINT AND IMPROVING LOAD-
CARRYING CAPACITY 

The proposed model can be used to determine analytically the points of stress concentrations 
in the zone of contact between the fastener and the timber and predict the brittle modes of 
failure in dowel-type timber joints.  

Let’s consider, for instance, the stress distributions calculated for a wood element of a unit 
thickness t and width b = 4d assuming the elastic properties of red spruce shown in Table 1. 
Table 2 summarizes the peak stresses  xy and  x at corresponding angles   for red spruce 
calculated in this example. The calculated stresses are normalized by the average bearing 
stress p = F/d and are shown along the hole edge as a function of angle    (as defined in Fig. 
3).

Avoiding completely tension perpendicular-to-grain and shear is not ever possible. If not 
placed properly, bolts may cause undesirable brittle failure in timber due to excessive tension 
perpendicular-to-grain. A possibility to avoid splitting and to guarantee a plastic joint 
behaviour is to reinforce the timber in the joint area. The tension stresses are then transferred 
by a reinforcement perpendicular-to-grain. Known methods to prevent splitting of timber 

Table 1. Elastic constants (MPa) of red spruce  
(Wood Handbook [30])

Ex Ey Gxy νyx

470 11100 670 0,470

Table 2. Predicted peak stresses at a joint  
of red spruce

e/d
Shear stress at 

θ = 60°
τxy / p

Perpendicular-to-grain  
stress at θ = 90°

σx / p

2 0,80 0,52

3 0,50 0,20

4 0,34 0,04

5 0,31 0,01

7 0,28 -0,03

10 0,18 -0,13

Figure 3. Angle θFig. 3. Angle  

Fig. 4. Reinforced bolted joint 

Fig. 5. Load ~ displacement behaviour for reinforced and non-reinforced bolted joints. 
(d=15,9 mm, b/2=44,5 mm, t=38,0 mm, e/d=5). 

1 – sin a
cos aw = 
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joint could be reinforced (Haller et al. [14], Haller 
and Wehsener [15], Blass and Bejtka [5], Chen [6], 
Hansen [16], Hockey et al. [17], Soltis et al. [28]), 
end distance requirements could be re-evaluated, 
which would allow more compact joints and an 
easier installation. 

The approach presented in this study is to 
use self-tapping screws oriented perpendicular-to-
grain as internal reinforcement. The reinforcement 
is shown in Fig. 4. Compared to the reinforcement 
methods mentioned, self-tapping screws are easier 
to apply and less expensive. 

In this paper, splitting failure is assumed to 
occur as soon as the perpendicular-to-grain stress 
reached the strength perpendicular-to-grain of the 
wood. Basically, the perpendicular-to-grain strength 
can be improved by reinforcement. Reinforcement 
could be used locally in the vicinity of a bolt. Conse-
quently, the cracks may be stopped at the position of 
the reinforcements and the bearing strength of the 
wood could be attained.

The analytical model presented allows pre-
dicting the load in the reinforcing screw. The force 
Fs acting in the screw is equal to the perpendicular 
stress σx multiplied by the area As on which the 
force acts.

The equation that describes the area As, con-
sidering the stresses between y=R and y=2R, has 
the following form:

As = t R (22)

The force acting in the screw is:

  (23)

In these circumstances local reinforcement 
can be very effective in ensuring a reasonable load-
carrying capacity and stiffness and in providing the 
necessary ductility.

4.  EXPERIMENTAL 
VERIFICATION

Laboratory tests on reinforced and non-rein-
forced bolted timber joints loaded parallel to grain 
by a single bolt representing the geometry shown 
in Fig. 1 were performed to verify the predictions 
of the proposed analytical model. The bolts were 
15,9-mm (5/8-in.) in diameter made of low carbon 
steel conforming to ASTM A307. Bolt lengths were 
selected to ensure that threads were excluded from 
bearing against the wood. The ratio of the wood 
member thickness to bolt diameter was small enough 
to induce failure in the wood, with minimum bending 
deformation of the bolt. Wood plates for the joints 
were cut from 38 by 89-mm (nominal 2 by 4-in.) red 
spruce kiln-dry lumber so that the joint area was free 
of defects. Tabla 3 and table 6 show the single-dowel 
joint geometry.

Prior to testing, the specimens were condi-
tioned to attain 12 % equilibrium moisture content. 
Specific gravity based on oven-dry mass and volume 
at 12 % moisture content of the specimens varied 

members are reinforcements of the joint area with glued-on wood-based panels, pressed-on 
punched metal plates or glass fibre reinforcements. If wood joint could be reinforced (Haller 
et al. [14, 15], Blass and Bejtka [5], Chen [6], Hansen [16], Hockey et al. [17], Soltis et al. 
[28]), end distance requirements could be re-evaluated, which would allow more compact 
joints and an easier installation.

The approach presented in this study is to use self-tapping screws oriented perpendicular-to-
grain as internal reinforcement. The reinforcement is shown in Fig. 4. Compared to the 
reinforcement methods mentioned before self-tapping screws are easier to apply and less 
expensive.

In this paper, splitting failure is assumed to occur as soon as when the perpendicular-to-grain 
stress reached the strength perpendicular-to-grain of the wood. Basically, the perpendicular-
to-grain strength can be improved by reinforcement. Reinforcement could be used locally in 
the vicinity of a bolt. Consequently, the cracks may be stopped at the position of the 
reinforcements and the bearing strength of the wood could be attained. 

The analytical model presented previously allows predicting the load in the reinforcing screw. 
The force Fs acting in the screw is equal to the perpendicular stress  x multiplied by the area 
As on which the force acts. 

The equation that describes the area As, considering the stresses between y=R and y=2R, has 
the following form: 

=As t R (22)

The force acting in the screw is: 
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b R R tR

υπ ω
π ππ

⎧ ⎫+ ⎛ ⎞⎛ ⎞⎪ ⎪⎛ ⎞= − + − ⎜ ⎟⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
2

4 3
2 2 22

(23)

In these circumstances local reinforcement can be very effective in ensuring a reasonable 
load-carrying capacity and stiffness and in providing the necessary ductility. 

4. EXPERIMENTAL VERIFICATION 

Laboratory tests on reinforced and non-reinforced bolted timber joints loaded parallel to 
grain by a single bolt representing the geometry shown in Fig. 1 were performed to verify the 
predictions of the proposed analytical model. The bolts were 15,9-mm (5/8-in.) in diameter 
made of low carbon steel conforming to ASTM A307. Bolt lengths were selected to ensure 
that threads were excluded from bearing against the wood. The ratio of the wood member 
thickness to bolt diameter was small enough to induce failure in the wood, with minimum 
bending deformation of the bolt. Wood plates for the joints were cut from 38 by 89-mm 
(nominal 2 by 4-in.) red spruce kiln-dry lumber so that the joint area was free of defects. 

Prior to testing, the specimens were conditioned to attain 12 % equilibrium moisture content. 
Specific gravity based on ovendry mass and volume at 12 % moisture content of the 
specimens varied from 0,37 to 0,41 as determined per ASTM D2395-02 [2]. Material shear 

Figure 4. Reinforced bolted joint
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from 0,37 to 0,41 as determined per ASTM D2395-
02 [2]. Material shear strength parallel-to-grain and 
tensile strength perpendicular-to-grain were deter-
mined using ASTM D143-94 [1]. The shearing sur-
face dimensions were identical for all shear strength 
parallel-to-grain tests. The dowel embedding strength 
for each bolt diameter was determined according to 
ASTM D5764-97a [3]. The material properties are 
summarized in Table 4. 

The joints were tested with static load applied 
in tension parallel-to-grain using a universal testing 
machine in accordance with EN 26891:1991 [13]. 

Fig. 4 shows the reinforcing screw used in this 
study. A screw (GRK fastener 1/4” by 3½”) with 90 
mm of length, 6 mm of outer diameter and 70 mm 
of threaded length was used. The reinforcing screw 
is at a distance s=d from the centre of the hole.

Tests were normally conducted on single-hole 
specimens which had the geometry described in 
Tables 5 and 7. During the course of this experimenta-
tion, 37 specimens were tested using reinforced joints 
with self-tapping screws. For comparison, 53 joints 
were tested without reinforcement perpendicular-
to-grain.

Table 3. Non-reinforced single-dowel joint geometry 

Bolt diameter 
d (mm)

Edge distance 
b/2 (mm)

Thickness 
t (mm)

End distance 
e 

Number of 
replications

15,9 44,5 38,0 2d, 3d, 4d, 5d, 
7d and 10d 53

Table 4. Mechanical properties of red spruce 

Plate thickness t (mm)

Strength average (MPa)

σx 
Perpendicular-to-grain

σy 
Embedding

τxy 
Shear

38,0 3,80 29,7 8,80

Table 5. Experimental results and analytical predictions for non-reinforced single-bolted joints 

Bolt 
diameter 
d (mm)

e/d 

Experimental Predicted Comparison

Number of 
replications

Average 
failure load
Fexp (kN)

Standard 
deviation

(%)

Failure load
F (kN)

Average 
bearing 
stress 

p (MPa)

Prevalent 
failure mode

(F-Fexp)
Fexp
(%)

15,9

2 10         4,43 13 4,42       7,30 Splitting         -0,40
3 8       12,1 7 10,6     17,6 Shear-out       -12,5
4 10       17,3 4 15,6     25,9 Shear-out         -9,60
5 10       18,2 9 17,2     28,4 Shear-out         -5,60

7 7       20,5 7 17,9     29,7 Bearing       -12,5

10 8       20,3 10 17,9     29,7 Bearing       -11,4
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The number of replications, the summary of 
test results and comparison with the analytical predic-
tions for each test configuration are given in Tables 5 
and 7. The load-carrying capacities were predicted 
using the stresses obtained by the analytical model 
and the failure criteria presented above. 

The effectiveness of reinforcement methods 
is studied along with the possibility of reducing the 
end-distance requirements. Test results in Table 7 
showed that reinforcement had positive effects on 
the load-carrying capacity when the end distance 
e is shortest. The predominant failure mode in 
specimens loaded parallel to grain was in shear 
without plug-shear-out. Little evidence of wood 
crushing was observed. The screws prevent the 
cracks from further growing. Failure modes were 
affected by reinforcement; the propagation of crack 
was reduced. Generally, the crack propagation in 
non-reinforced joints was more pronounced than 
in the reinforced ones. The reinforced specimens 
with e=2d, 3d, 4d and 5d failed mainly in shear as 
predicted by the model. 

Table 6. Reinforced single-dowel joint geometry 

Bolt diameter 
d (mm)

Edge distance 
b/2 (mm)

Thickness 
t (mm)

End distance 
e 

Number of 
replications

15,9 44,5 38,0 2d, 3d, 4d and 5d 37

Table 7. Experimental results and analytical predictions for reinforced single-bolted joints 

Bolt 
diameter 
d (mm)

e/d 

Experimental Predicted Comparison

Number of 
replications

Average 
failure load
Fexp (kN)

Standard 
deviation

(%)

Failure load
F (kN)

Screw load
Fs (kN)

Prevalent 
failure mode

(F-Fexp)
Fexp
(%)

15,9

2 10        9,76 10        6,65 1,10 Shear-out      -31,9

3 9      12,7 25      10,6 1,10 Shear-out      -16,5

4 9      17,4 5      15,6 0,30 Shear-out      -10,3

5 9      18,4 10      17,2 0,10 Shear-out        -6,5

Fig. 5 shows the load-displacement curves 
for a non-reinforced and a reinforced joint. Table 8 
shows the relation between load-carrying capacity 
of reinforced and non-reinforced joints. Particularly, 

Figure 5. Load ~ displacement behaviour for 
reinforced and non-reinforced bolted joints.

(d = 15,9 mm, b/2 = 44,5 mm, t = 38,0 mm, e/d = 5)

Fig. 3. Angle  

Fig. 4. Reinforced bolted joint 

Fig. 5. Load ~ displacement behaviour for reinforced and non-reinforced bolted joints. 
(d=15,9 mm, b/2=44,5 mm, t=38,0 mm, e/d=5). 
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the load-carrying capacity increases 120 % for the 
e=2d reinforced specimens with 15,9-mm bolts. It 
is clear that the increase in load-carrying capacity 
is significant with the use of the reinforcing screws 
enabling smaller joints and significant savings in 
timber volume. 

ment with the calculated load-carrying capacities 
and predicted failure modes.

Nomenclature

A complex constant 

B complex constant

b width of plate

d diameter of the hole

e end distance

Ex perpendicular-to-grain modulus of elasticity 

Ey longitudinal modulus of elasticity

F resultant force

Fs screw load

Gxy shear modulus

p average bearing stress 

R radius of the hole

s screw distance

Sij  elastic compliances of the plate material 

λ clearance

1u , 2u  constants 

kz  complex variable

µ1 , µ2   complex parameters of the first order 

νyx  coefficient of Poisson

σx perpendicular-to-grain stress 

σy longitudinal stress

τxy shear stress

( )ϕ 1z , ( )Ψ 2z  complex stress functions
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Table 8. Relation between load-carrying capacity of 
reinforced and non-reinforced joints

Bolt diameter 
d (mm) e/d

Ratio of reinforced and 
non-reinforced load-carrying 

capacity (%)

15,9 2                  120

15,9 3                      4,68  

15,9 4                      0,78

15,9 5                      1,03

5.  CONCLUSIONS

The solution proposed here is entirely ana-
lytical and the most important results are compiled 
clearly in tables. 

This study dealt with the analytical and 
experimental investigation of the effectiveness of 
self-tapping screws as means of reinforcing bolted 
timber connections loaded parallel-to-grain. Several 
equations are presented to calculate the load-carry-
ing capacity of reinforced and non-reinforced timber 
joints. 

The reinforced specimens showed a less cata-
strophic failure mode whereas the non-reinforced 
specimens failed in a brittle way. In reinforced joints it 
is observed some increase in embedding and ultimate 
strength, when compared with non-reinforced joints. 
It is also concluded that spacing and end distances 
can be reduced. 

Ultimate loads from tests on wood plates 
loaded with a single bolt show a very good agree-
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