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Abstract

Sometimes after scheduling a project, it is necessary to shorten its duration. There 
are many factors that force to crash the duration. Some reasons may be saving costs, 
early commissioning or avoiding potential risks. In this case, it is necessary to allocate 
more resources to activities to shorten their duration while trying to invest as little 
money as possible. The time–cost tradeoff problem is one important problem in 
project scheduling. In this study the time–cost tradeoff problem is aborded considering 
a discrete approach and it is solved using a non-dominated genetic algorithm. The 
application in a construction project identified a Pareto front that managers could use 
for decision making. Managers were able to analyze different scenarios to meet delivery 
date, costs, and scope.
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Algoritmo genético no dominado 
NSGA-II para la aceleración de 
programa considerando el problema 
de compensación discreta tiempo-
costo (DTCTP) en un proyecto de 
construcción

Resumen 

A veces, después de programar un proyecto, es necesario acortar su duración. Son muchos 
los factores que obligan a acortar la duración. Algunos factores pueden ser ahorro en 
costos, puesta en operación anticipada o para evitar riesgos. En este caso, es necesario 
asignar más recursos a las actividades para acortar su duración mientras se intenta 
invertir la menor cantidad de dinero posible. El problema de la compensación de tiempo 
y costo es un problema importante en la programación de proyectos. En este estudio se 
aborda el problema de la compensación tiempo-costo desde un enfoque discreto y se 
resuelve utilizando un algoritmo genético no dominado. La aplicación en un proyecto de 
construcción permitió identificar un frente de Pareto que los gerentes podían usar para 
la toma de decisiones. Los gerentes pudieron analizar diferentes escenarios para cumplir 
con la fecha de entrega, los costos y el alcance ofrecido.
Palabras clave: Compensación tiempo-costo, Aceleración. NSGA-II, Problema multi objetivo, 
Programación de proyectos. 

1.    Introduction

Projects by nature are subject to uncertainty and complexity. As a consequence, there 
have usually problems that affect its performance. As a result, it is usually expected to 
have problems with time during the execution phase. And even, the completion time may 
be expected to exceed the deadline. This is noticeable on construction industry where 
time delays are common (Adam, Josephson and Lindahl, 2015). 

Reducing the time of a project is a recurrent issue when planning or executing a 
project. This is due to: rush to enter a new product to the market, avoid unfavorable 
weather seasons, compensation for delays in activities, client imposition, incentive 
contracts or key resource needs (Gray and Larson, 2009). Reducing project duration is 
framed in the time-cost tradeoff problem – TCTP.

In this situation, the project management allocates addition resources to shorten 
completion time. However, he needs to spend the least amount of money possible while 
achieving an agreed time Shahriari (2016).

The solution of the problem has been evolving on time. The first approach was 
considering linear this problem. This means that resource costs were considered to be 
the same over time. So direct and indirect costs were added while reducing task duration 
(Vanhoucke, 2005).
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When practical needs emerged, the research focused on solving the discrete 
approach of the problem (Vanhoucke, 2005). This approach was abbreviated as the 
DTCTP, the discrete time-cost trade-off problem.

In this case, the activity duration is a discrete, nonincreasing function of the amount 
of the single nonrenewable resource assigned. So, each activity can be executed in a 
limited number of time-cost alternatives, so-called modes, for each activity, according to 
all possible resource allocations (Wei, Su and Zhang, 2020)an equivalent simplification 
approach, which is an effective method for solving large-scale complex problems. We first 
study a way to deal with the anomalies under GPRs, such as the reduce (increase, (Wglarz 
et al., 2011). It involves the selection among execution modes (the cost-time tuples for 
each activity) to achieve an objective (Vanhoucke, 2005).

Solution procedures to the DTCTP are classified into exact and heuristic. Exact 
procedures used are dynamic programming, enumeration algorithms, or project network 
decomposition (Shahriari, 2016), (Tareghian and Taheri, 2007). But considering the 
structure of networks, and the number of activities and operation modes, it cannot be 
solved optimally in a reasonable amount of time (Tareghian and Taheri, 2007). Prabuddha 
et al. (1997) proved that the problem is strongly np-hard for project networks. So a 
variety of optimal solutions are reached by heuristic procedures González  (2013).

According to (Wei, Su and Zhang, 2020) there are three solution orientations in 
literature. The orientation may be focused on the deadline, budget or efficiency between 
time-cost solutions over the set of feasible durations.

Exact methods for the DTCTP have been based on dynamic programming algorithm 
(Robinson, 1975), (Hindelang and Muth, 1979); branch-and-bound-based algorithms 
(De et al., 1995), (Demeulemeester et al., 1998), (Vanhoucke, Demeulemeester and 
Herroelen, 2002), (Deǧirmenci and Azizoǧlu, 2013); column generation method 
(Akkan, Drexl and Kimms, 2005); and cutting plane algorithm (Hadjiconstantinou and 
Klerides, 2010).

However, there are two drawbacks for research about DTCTP. There is much 
research effort in DTCTP but it usually considers few activities (Li, Xu and Wei, 2018). 
But in practice, most projects have over 25 activities (Liberatore, Pollack-Johnson and 
Smith, 2001), (Wiest, 1967). The other drawback is the lack of real performance analysis. 
The test is often in simple examples so adaptability and effectiveness are not proved (Li, 
Xu and Wei, 2018), (Zheng, Ng and Kumaraswamy, 2005), (Feng, Liu and Burns, 1997).

The use of heuristics and metaheuristics is oriented to apply simulated annealing 
algorithm (Anagnostopoulos and Kotsikas, 2010); ant colony algorithm (Mokhtari, 
Baradaran Kazemzadeh and Salmasnia, 2011); tabu search (He et al., 2017); variable 
neighborhood search (He et al., 2017); memetic algorithm (Wood, 2017); network analysis 
algorithm (Bettemir and Talat Birgönül, 2017); particle swarm algorithm (Aminbakhsh 
and Sonmez, 2016), (Aminbakhsh and Sonmez, 2017); and genetic algorithm (Mokhtari, 
Baradaran Kazemzadeh and Salmasnia, 2011), (Sonmez and Bettemir, 2012), (Shahriari, 
2016), (Agdas et al., 2018).

For this study, it was used the non-dominated NSGA-II genetic algorithm. The NSGA-
II works with Pareto fronts that yield a variety of optimal solutions. The decision is 
taken according to the available budget and time. The model includes situations from 
real projects and it has an efficient consumption of resources and machine time.The 
final front of the solutions in NSGA-II presents a variety of solutions for decision makers, 
and they have opportunity to select a proper solution based on the available budget and 
appropriate time for the project.
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2.    Methods 
The mathematical model includes two objective functions corresponding to cost and time. 
It also  considers schedule compression and time delay. The algorithm was programmed 
in Java language. The task duration is modeled by a negative exponential distribution. It 
means that the time-cost function takes values   inversely, for example, if time decreases, 
the cost increases and vice versa. The model finds optimal task duration that minimizes 
the total cost, defined by the sum of indirect, direct, and incentive costs.

Problem Formulation and Notation

ti=Happening time of event i 

Ta(ij)=Minimum allowed time of activity ij (crash time)

Tn(ij)=Normal time for activity  ij

Tm(ij)=Maximun allowed time for activity  ij

dij=Scheduled (actual) time of activity ij (decision variable time

optimum)

CI=Project indirect cost  

CD=Project direct cost

Ca(ij)=Compressing cost of activity ij

Cn(ij)=Normal cost of activity  ij

Cm(ij)=Cost of delaying in activity ij

Cij=Compressing cost rate of activity ij

C’ij=Saving rate of delaying for activity ij

tmax=Maximum allowed time for finishing the project

cmax=Maximum available budget 

yij={1 If activity ij is compresed / 0 Otherwise}

y’ij={1 If activity ij has delay / 0  Otherwise}

y’’ij={1 If activity ij has been done in normal time / 0 Otherwise}

The first objective function  seeks to compress time and to minimize cost as follows:

Min (Z1 )=CI (tn-t1)+CD+∑i∑_jyijCij {Tn(ij)—dij}—∑i∑jy´ij. C’ij {Tn(ij)—dij } (1)

It adds indirect costs, direct costs, and compression costs, and subtracts the money 
saved of delaying activities.

The cost function is non-linear which means that the time-cost curve follows an 
exponential behavior. This exponential relationship between compression time and 
compression cost results in:

C(dij)=α.e-β.dij          (2)

β=Ln(Cn/Ca)/(Ta—Tn)          (3)



Álvaro Julio Cuadros López, José Miguel Villota Rodríguez, José Deyson Velázquez Sánchez

5Universidad EIA / Rev.EIA.Univ.EIA

Then,

 α=e{Ln(Cn)+β.Tn}          (4) 

The saving coefficient behaves in the same way, when the execution time of the 
activities has been extended from the normal time.

C’(dij)=α’.e -β’.d
ij          (5)

β’=Ln(Cm/Cn) / (Tn—Tm)          (6)

Then, 

α’=e{Ln(Cm) + β’.Tm}           (7)

By substituting (2) and (5) in (1), and replacing the direct cost CD by the expression

∑i∑jy’’ij. Cn(ij), it is obtained:

Min (Z1)=CI(tn—t1) + ∑i∑j yij.αij.e-β
ij

*d
ij) + ∑i∑jy’ij.α’ij.e-β’

ij
*d

ij 
) +∑i∑jy’’ij.Cn(ij)           (8)

The second objective function is considered as the project completion time:

Min (Z2)=tn           (9)

It is assumed that , where  denotes the event of completion of the activity  and t_i the 
event of beginning of the activity , which means that the variable  takes a positive integer 
value of this difference.

For minimum allowed  and maximum allowed time restrictions , that the variable  
may take, there were created the following expressions (10), (11): 

yij.Ta(ij) ≤ yij.d(ij) ≤ y(ij). Tn(ij) ;  ∀i,j           (10)

y’ij.Tn(ij) ≤ y’ij.d(ij) ≤ y’(ij).Tm(ij); ∀i,j           (11)

If the activity has not been compressed or delayed, it meets a logical restriction of 
equality between  y  like this:

y’’ij .d(ij)=Tn(ij) . y’’(ij);    ∀i,j           (12)

Binary variables must meet the conditions of equation 13 and 14:

yij+y’ij+y’’ij=1;    ∀i,j           (13)

Tn≤Tmax           (14)

The total cost  cannot be less than the sum of the direct and indirect costs of the 
activities plus the increase or decrease in case the activity is accelerated or delayed:

CI(tn— t1  +  ∑i∑jyij. αij e-B
ij

.d
(ij) — ∑i∑j y’

ij . αij e-B
ij.

 d
(ij)

 + ∑i∑jy’ij .Cn(ij) ≤ Cmax           (15)
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The non-negativity constraint for the events is expressed as .

Solving algorithm

The input parameters are the number of tasks, accelerated, normal, and delayed times 
and costs. Other inputs are precedence relationships, indirect cost per project period, 
and a random seed. It takes values from -1 to 9 where the lower the value the number 
of solutions is repeated to a greater degree. Otherwise, solutions with similar values   of 
time and cost are generated, but not equal. Population size. Number of chromosomes 
in each iteration of the algorithm potential solutions to generate  (npop en el articulo). 
Probability of mutation. Number of chromosomes mutating in each iteration of algorithm. 
It takes values from 0.1% to 5% (Pm en el articulo). Number of iterations. Maximum 
number of iterations the algorithm operates and provide the N quasi optimal solutions 
(Nit en el articulo). Crossover function. The method selects two parents randomly. Then, 
produces two offpring through a single-point crossover operator. Selection function. The 
model takes two parents and selects the one with the highest fitness function. It is a 
direct comparison trough a tournament selection operator. The procedure is repeated 
in each iteration. Genome to mutate. Number of genome or activities to mutate in each 
iteration of algorithm.

The algorithm randomly creates an initial population of chromosomes. Then finds 
the fitness of each chromosome to select those which continue. Selects two chromosomes 
and create two new child chromosomes using the crossover function and probability of 
mutation. Substitute the parents for the children and repeat for a number of iterations 
completing the population requested.

3.   Results and Discussion

The proposed algorithm was applied in a project from the building construction industry. 
The scope of the project was the construction of the Zarzal campus of the Universidad 
del Valle at the cost of $6.733.473.346. The project had four work fronts: classrooms, 
restaurant, swimming pool and outdoor areas.  The project had four work fronts: 
classrooms, restaurant, swimming pool and outdoor areas. The four work fronts were 
simultaneously scheduled and built in parallel way. The information on activities, times 
and costs of the project can be seen in table 3

Table 3. Direct costs and completion time per module 

Modulo Tiempo de 
terminación Costo directo Actividades 

modulo
Aulas 513 $ 3.623.752.600 17

Cafeteria - 
Restaurantes 281 $ 338.643.801 14

Graderias-Vestier-
Piscina 336 $1.231.212.819 14

Zonas Exteriores 299 $ 1.539.864.126 38

Consequently, there were four project network diagrams as can see in figure 13.
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Figura 13. Acitivity on Arrow (AoA) network diagrams.

Front 1

Front 2

Front 3

Front 4 



Non-dominated NSGA-II genetic algorithm for schedule acceleration considering the discrete time-cost compensation problem 
(DTCTP) in a construction project

8       https://doi.org/10.24050/reia.v19i38.1574

The consortium in charge of the project provided the design, time and cost of 
activities. An expert who took part in the project provided accelerated and delayed time 
and cost of activities. Activities accelerated and delayed time was estimated considering 
their nature and expected performance. The times changed up to 30% although some 
tasks, by nature, are not possible to accelerate or delay. The costs were estimated by 
subtracting or adding the cost per day of the activities. Table 4 shows normal (tn), 
accelerated (ta) and delayed times (tm), as well as the normal (cn), accelerated (ca) and 
delayed (cd) costs.

Tabla 4. Input data



Álvaro Julio Cuadros López, José Miguel Villota Rodríguez, José Deyson Velázquez Sánchez

9Universidad EIA / Rev.EIA.Univ.EIA

The design of the project allowed the application of the model per work front. To 
be clear, only work front 1 results are detailed showed. The interpretation of the other 
modules can be found in the annexes. The work front 1 corresponds to the classrooms 
module of the project. Module 1 with 17 activities was scheduled with a duration of 
513 days and a direct cost of $ 3,623,752,600. The algorithm run with the following 
parameters: 30 genome to mutate, 1,000 iterations, 50 solutions, probability mutation of 
0.1%, crossover function of 0.15%. The indirect cost per period was stablished using the 
cost of the longest work front.

The model found 50 quasi-optimal solutions. As a result, the module schedule 
could be reduced to 361 days at a cost of $ 3,923,120,142 as can be seen in table 5. 
This means that the duration could be reduced by up to 152 periods with an over-cost 
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of $ 299,367,543. At the other extreme is the option to delay to 573 days with a cost 
of $ 2,945,646,160. This corresponds to an increase of 60 periods for the completion 
of the module and a saving of $ 678,106,440.

Table 5. Results module 1 of time-cost, compression values   , and delay in activities

For each solution, the model accelerates activities with an impact on the duration 
and delays those without it. As a consequence, every solution includes over-costs or cost 
savings. In all cases within the range stipulated for times and costs. For instance, solution 
1 accelerated some activities (A1, A2, A4, A9, A10, and A16). In the same way, it delayed 
others (A5, A6, A7, A12, A13, and A14). And other, following the initial considerations, 
were kept the same (A3, A8, A11, A15, and A17). Table 6 shows the final data for solution 
1 with the final time and cost (accelerated or delayed). In all cases, the decision considers 
initial duration ranges. It may be seen that activity A12, having a possible range of 
durations between 25 and 46 days, is delayed up to 45 days. This results in a cost of $ 
125,212,896.

Tabla 6. Tiempo-costo solución factible módulo 1.



Álvaro Julio Cuadros López, José Miguel Villota Rodríguez, José Deyson Velázquez Sánchez

11Universidad EIA / Rev.EIA.Univ.EIA

The results show the nature of the time-cost trade-off problem. Searching for better 
solutions decreases completion time but also increases the cost. It may also find repeated 
solutions. For instance, figure 15 shows 49 unique solutions because solution 16 was 
found twice. It is also seen that in the solutions range there is a change in the time-cost 
rate. From duration 573 to 414, the activities were accelerated at a lower cost. But from 
414 to 361 accelerating a period has an exponential increase in cost.  

Figura 15. Frente de Pareto módulo 1. 

The model was run for the other three modules obtaining their Pareto front and 
quasi-optimal solutions. The solutions for modules 2, 3, and 4 may be seen in figures 16, 
17, and 18 respectively.

Figura 16. Frente de Pareto modulo 2.
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Figura 17. Frente de Pareto modulo 3.

Figura 18. Frente de Pareto modulo 4

The analysis of results allows rezoned decision-making. Project managers 
may determine more clear commitments and strategies. As an example, the authors 
selected 4 solutions for the development of the project. The comparison of the original 
project with the proposal is shown in table 8. For the Classroom module, it was used 
the solution with the best accelerated time with a value of 361. This accelerated 152 
periods. For the other modules, the solutions chosen were the closest to the completion 
time of module 1. These modules were delayed in obtaining savings. The indirect cost 
was reduced, due to time reduction from 513 to 361 days, going from $ 2,351,075,409 
to $ 1,654,460,470. In the end, the new plan for the project lasts 361 days at a total cost 
of $ 8,197,611,623. This means that the project may end 152 days earlier and there will 
be a saving of $ 896,937,132.
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Tabla 8. Comparativo

4.   Conclusions

The model requires that the network diagram must be correctly prepared. Otherwise the 
Pareto front will not be built with real solutions. The algorithm uses the dependencies to 
build the critical path of the project.

The solution of the DTCTP problem by the NSGA-II genetic algorithm does not find 
an optimal. But rather Pareto fronts with quasi-optimal solutions. However, the selection 
of a solution from the Pareto front depends on the Project Manager. Decisions should 
consider pareto front, environment knowledge and risk analysis.

The project was designed in parallel work fronts. This allowed the application of the 
model as if they were four independent projects. But accelerated scenarios in this context 
should include an important consideration. It is necessary to speed up the module with 
the least compression flexibility. A work front cannot be accelerated below the duration 
of other work front. Any resource added below this limit is an unnecessary cost.

The model considers data that draw the problem nearer to real-world situations. 
Including direct and indirect costs and the possibility to delay activities provides 
potential real solutions.
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