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ABSTRACT
Obtaining information through the measurement of brain signals recorded during different processes or 

physiological conditions is important for developing computer interfaces that translate electrical brain signals to 
computer control commands. Electroencephalography (EEG) records the electrical activity of the brain in response to 
its receipt of different external stimuli (potential events). Analysis of these signals makes it possible to identify and 
distinguish specific states of physiological brain function. The Fractal Dimension has been used as a tool for biomedical 
waveform analysis, in particular to measure the complexity of time series generated by EEG. This paper aims to analyze 
a database (HeadIT) of biomedical time series obtained by EEG for which the fractal dimension will be obtained by the 
Higuchi, Katz and multiresolution box-counting methods, showing the relationship between the method for obtaining 
the fractal dimension and the physiological condition of the brain event-related potentials.
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COMPARATIVO DE LOS ALGORITMOS DE DIMENSIÓN FRACTAL 
HIGUCHI, KATZ Y MULTIRESOLUCIÓN DE CONTEO DE CAJAS 

EN SEÑALES EEG BASADAS EN POTENCIALES RELACIONADOS        
POR EVENTOS

RESUMEN
La obtención de información por medio de la medición de señales registradas durante diferentes procesos o 

condiciones fisiológicas del cerebro es importante para poder desarrollar interfaces computacionales que traduzcan las 
señales eléctricas cerebrales a comandos computacionales de control. Un electroencefalograma (EEG) registra la actividad 
eléctrica del cerebro en respuesta al recibir diferentes estímulos externos (potenciales por eventos). El análisis de estas 
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are used to clinically evaluate brain activity. BCI 
systems interpret the physiological behavior of the 
brain (intention) through electrical event-related 
potentials (ERPs) to create computer commands that 
enable the development of electronic device control 
applications. In the following paper, the biomedical 
EEG signals obtained in response to external visual 
stimuli (visual evoked potential, or VEP) will 
be analyzed. Said VEPs are represented as time 
sequences (time series) for the electrical potentials 
obtained by way of the electrodes placed on the scalp.

señales permite identificar y distinguir estados específicos de la función fisiológica del cerebro. La Dimensión Fractal se 
ha utilizado como una herramienta para el análisis de formas de ondas biomédicas, en particular se ha utilizado para 
determinar la medida de la complejidad en series de tiempo generadas por EEG. El presente documento pretende analizar 
la base de datos HeadIT de series de tiempo biomédicas obtenidas por EEG a las cuales se obtendrán la FD por medio de 
los métodos Higuchi, Katz y Multi-resolución de Conteo de Cajas, que muestre la relación entre el método para la obtención 
de la Dimensión Fractal y la condición fisiológica de la señal basada en Potenciales Cerebrales Relacionados por Eventos..

PALABRAS CLAVE: Dimensión Fractal, Higuchi, Katz, Multiresolución de Conteo de Cajas, señales EEG. 

COMPARATIVO DOS ALGORITMOS DE DIMENSÃO FRACTAL 
HIGUCHI, KATZ E MULTI-RESOLUÇÃO DE CONTAR AS CAIXAS 

EM SINAIS EEG BASEADAS EM POTENCIAIS RELACIONADOS 
POR EVENTOS

RESUMO
A obtenção de informação por médio da medida de sinais registados durante diferentes processos ou condições 

fisiológicas do cérebro é importante para poder desenvolver interfaces computacionais que traduzam os sinais elétricos 
cerebrais a comandos computacionais de controle. Um eletroencefalograma (EEG) regista a atividade elétrica do cérebro 
em resposta ao receber diferentes estímulos externos (potenciais por eventos). A análise destes sinais permite identifi-
car e distinguir estados específicos da função fisiológica do cérebro. A Dimensão Fractal utilizou-se como uma ferramen-
ta para a análise de formas de ondas biomédicas, em particular utilizou-se para determinar a medida da complexidade 
em séries de tempo geradas por EEG. O presente documento pretende analisar séries de tempo biomédicas obtidas por 
EEG às quais obter-se-ão a FD por médio dos métodos Higuchi, Katz e Multi-resolução de Conteo de Caixas, que mostre 
a relação entre o método para a obtenção da Dimensão Fractal e a condição fisiológica do sinal baseado em Potenciais 
cerebrais relacionados por eventos.

PALAVRAS-CHAVE: Dimensão Fractal, Higuchi, Katz, Multi resolução da conta de Caixas, sinais EEG.

1.    INTRODUCTION

Brain computer interfaces (BCIs) monitor the 
brain activity of the user and translate his or her 
“intentions” in the form of orders without activating a 
single peripheral muscle or nerve (Millán et al., 2014). 
For the development of BCI systems, it is necessary 
to find tools that make it possible to homogenize 
the physiological condition of the users to be able 
to bring said systems under a type of control based 
on the “intention” of the user. The electrical signals 
obtained through electroencephalography (EEG) 
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engineering (Cervantes-De la Torre et al., 2013), 
(Gálvez et al., 2013), (Martins et al., 2012), (Millán 
et al., 2014), and (Perlingeiro et al., 2005). This 
paper focuses on experimental EEG-derived signals, 
and the algorithms proposed are those of Higuchi, 
Katz and the multiresolution box-counting (MRBC) 
method. Their results are widely applicable to any 
type of signal.

Various studies using EEG signals have 
employed FD algorithms: Polychronaki et al. (2010) 
for the detection of the start of an epileptic crisis; 
Easwaramoorthy and Uthayakumar(2010) used 
EEG signals to analyze brain activity during cognitive 
processes (reading, attention, memory, etc.); Loo et 
al. (2011) used EEG signals based on motor imagery 
for BCI systems; Bashashati et al.(2003) relied on 
FD methods to identify the control components of 
EEG signals in BCI systems; Esteller et al.(2001) and 
Raghavendra and Dutt (2010, 2009) used synthetic 
signals as datasets for the calculation of FD based on 
fractal behavior similar to that of EEG signals.

The relationship between the physiological 
condition of the EEG biomedical signals, based 
on ERPs, and the method for measuring the signal 
complexity will make it possible to show in a 
general sense how FD methods for signal analysis 
can be implemented in BCI systems. Here, one of 
the challenges is that the generalized condition of 
the users could be interpreted a certain way by a 
control device.In this paper the complexity of the 
biomedical EEG signals during short periods of time 
(fractograms) will be analyzed through calculation of 
the FD using the Higuchi, Katz and MRBC algorithms.

2.    METHODOLOGY

2.1. Experimentation
The signals analyzed in this project were 

registered during a test called theFive Boxes Test, 
in which the signals obtained were based on VEP 
described by S. Makeig (1999). The study was 
conducted with 15 right-handed volunteers, 12 men 
and 3 women between 19 and 53 years of age with 

One of the tools used for analyzing the 
EEG signals is the fractal dimension (FD), a term 
introduced by Mandelbrot (1983) that is applied to 
objects in space or fluctuations in time that possess 
some forms of self-similarity and cannot be described 
in a single scale of absolute measurement. FD refers 
to a non-whole number or a fractional dimension of 
an object. 

We define (X, d) as a metric space where 
space X is a set of objects called points and d is a 
metric as a function d : X × X → �, that measures 
the distance between a pair of points (x, y) in 
space X. We will consider the number N(r) the 
number of maximum fixed-radius circles r 
necessary to completely cover X, X ⊆ �2. N(r)  
and inversely proportional to r. We can say that

1 FD

N(r) = (—) (1)
r

when the value of r → 0 and we can find the 
smallest number of closed radius areas r necessary 
to cover space X, meaning that the FD is defined by

log(N(r))
FD = lim (2)

r → 0 log(1/r)
FD analysis is frequently used in biomedical 

signal processing, including EEG analysis, which 
has made it possible to study the dynamic chaos of 
the brain (Lutzenberger et al., 1995) and identify 
and distinguish specific states of its physiological 
functions (D. Easwaramoorthy and R. Uthayakumar, 
2010). In particular, it has been used to measure the 
complexity of EEG signals (B. S. Raghavendra and D. 
N. Dutt, 2009). 

FD analysis has also been used on many 
occasions in biomedical signal processing in the 
form of EEG analysis (Bachmann et al., 2013), 
(Baljekar and Patil, 2012), (Bojié et al., 2010), (Jevtić, 
and Paskaš, 2011), (Esteller et al., 2001), (Georgiev 
et al., 2009), (Harne, 2014), (Katz, 1988), (Khoa and 
Toi, 2012), (Loo et al., 2011), (Paramanathan and 
Uthayakumar, 2008), (Polychronaki et al., 2010), 
(Raghavendra and Dutt, 2009) and (Spasićm et al., 
2011) as well as in a variety of aspects of systems 
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an average of 30 years, 12 with normal vision and 3 
with corrected vision.

In the Five Boxes Test, the participants fixed 
their sight on a cross, above which five boxes were 
continuously exhibited (pictures) (Figure 1). In each 
test block of 76 seconds, one of the boxes (gray box) 
was a different color. This picture was randomly 
placed throughout the test periods. One series of 
circles were briefly presented in one of the five 
boxes in random order. The participant was asked to 
respond by pressing a button as quickly as possible 
each time a disc appeared in one of the boxes.

Figure 1. Visual stimulus pattern for the Five Boxes Test

EEG data were obtained from 29 scalp 
electrodes mounted on a standard electrode mesh 
(ElectroCap, Inc.) based on the International 10-
20 Modified Combinatorial Nomenclature (MCN) 
system as shown in Figure 2, and from two 
periocular electrodes placed below the right eye 
and in the outer corner of the left. The data were 
sampled at 256Hz with an analog bandpass filter 
(BPF) of 0.01-50 Hz. Subsequently, responses were 
digitally filtered with a low-pass filter (LPF) below 
40 Hz prior to analysis (S. Makeig et al., 2004). 

Figure 2. International 10–20 Electrode System featuring 
MCN

2.2.  Data selection

The data (obtained from the Human 
Electrophysiology, Anatomic Data, and Integrated 
Tools, HeadIT; belonging toSwartz Center for 
Computational Neuroscience(SCCN) of the 
University of California San Diego, United States of 
America; founded and developed by the U.S. National 
Institutes of Health grants R01-MH084819(Makeig, 
Grethe PIs) and R01-NS047293(Makeig PI))are 
organized into sessions, each representing the 
implementation of the Five Boxes Test with a random 
number of events, and each study subject doing one 
or more sessions. The information obtained during 
the experiment generates an EEG of 32 channels 
that were obtained through EEGLABv7.1.3.13b 
software, freely distributable under the GNU GPL 
free software license, and developed by Delorme 
and Makeig (2004).

1.  Wave signals and time series

The EEG signals obtained from a set of 
electrodes fixed on the cerebral cortex are irregular 
time series represented as waveforms. We will 
consider the waveform a discrete time series in the 
following manner: 

S = {s1, s2, . . . sN                                   (3)

where N represents the total points in the 
series and s the successive values of the EEG. The 
graph of the series is represented as si = (xi, yi), i = 
1,2, ... N, where xi are the values of the abscissae 
and yi the values of the ordinates (Figure 3). In the 
waveforms of the time series si = ti, they increase 
monotonically at the point in time when the wave is 
shown (Dubravka et al., 2011). 

FD algorithms allow us to interpret the chaotic 
behavior in irregular time series, represented as 
wave signals, and discriminate patterns based on 
similarity. (P. Paramanathan and R. Uthayakumar, 
2007).
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Figure 3. Representation of the waveform as a time se-
ries where the X axis represents the points of the series 
and the Y axis represents the amplitude of the signal

2.  Katz algorithm

The calculation of FD proposed by Katz (1988) 
is described as the ratio of the length of curve L, 
calculated as the sum of the Euclidean distances 
between two successive points, divided by the 
maximum distance d of any point in the in the frame 
in question from the first point (M. Katz, 1988). We 
can interpret it as the ratio of the total length of the 
curve compared to the straight line corresponding to 
the maximum Euclidean distance from the first point.
The algorithm defines FD as

log10(L)
FD = (4)

log10(d)

where L is the total longitude of the curve 
or the sum of the Euclidean distances between 
successive points

N
L = � dist (si, si+1), i = 1, . . . N–1 (5)

i=1

and d is the diameter (or planar extension) of 
the curve, meaning the distance between the first 
point in the sequence and the furthest point in the 
sequence (Figure 4), d can be expressed as

 d = max {dist (s1, si), i = 1,... N} (6)

Figure 4.  d represents the planar extension of the time 
series  S

Katz proposed normalizing d and L by the 

length of the middle stage or the mean distance 

between successive points, a=
L

—
N

, where N is the 

number of steps in the curve. Thus, (4) becomes
  

log10 ( L—a ) log10(N)
FD = = (7)

log10 ( d—a ) log10 ( d—L ) + log10(N)

3. Higuchi algorithm

For the Higuchi algorithm, S  is considered the 
time series to be analyzed. The algorithm consists 
of forming new waveforms, subsequences of S, by 
iterative selection samples that differ in their origin 
point m and their delay factor or discrete time 
interval between points k (delay). First, we select 
the maximum delay factor, kmax Thus, for each delay 
factor k, where k varies from 1 to kmax, we form k’s 
new time series,  Sk

m , defined as 

Sk
m = � sm , s(m + k), S(m + 2k) , . . . , s(m +�a�k) 

�          (8)

where a=
N – m

k
, m = 1,2,..., k; k = 1,..., kmax , m  

and k are whole positives.

For example, if k = 3 and N = 100, the 
constructed time series are defined as

S3
1 = s1,  s4,  s7,  s10, s97,   s100 

S3
2 = s2,  s5,  s8,  s11, s98,

S3
3 = s3,  s6,  s9,  s12, s99,
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for each constructed time series Sk
m its mean 

length Lk
m is defined by

��a� �s(m+ik) – s(m+(i–1)k� (N –1)
(9)ⁱ=1

Lk
m=

�a�k

where N is the total length of the data sequence 
S and (N –1)/(�a�k) is the normalizing constant for 
the length of the subsequence. 

We then calculate the average length of the 
curve for each k, �Lk� as the mean value of the Lk

m of 
the k subsequences, which is defined by

1 k
�Lk� = — � Lk

m (10)
k m =1

The average length �Lk� of the series S is 
obtained by the average of all the lengths Lk

m of 
the k subsequences. This procedure is repeated for 
each range of k from 1 to kmax (G. E. Polychronaki et 
al, 2010). 

If �Lk� ∝ k–FD , then the curve is a fractal with 
dimension FD, in which case the graph log10 (�Lk�)  
vs log10(k) must approximate a straight line with a 
slope equal to –FD, whereby FD can be calculated 
using a linear least squares approximation (G. E. 
Polychronakiet al., 2010).

4.  Multiresolution box-counting algorithm

The MRBC algorithmis based on the space-
filling properties of a curve. The curve is covered 
with a set of objects of the same area or boxes (in 
this case square boxes). A size is determined for 
the area of each object, and the minimum number 
of boxes necessary to cover the curve is counted. As 
the size of the boxes approaches zero, the total area 
covered by the boxes will converge to the desired 
size of the curve.

This algorithm seeks to obtain the FD for 
various box sizes and make a linear fit to a graph 
log10(N(r)) on log10(r). The slope of the least squares 
line is taken as an estimation of the FD of the curve 
(B. S. Raghavendra, y D. N. Dutt, 2010). 

We consider S, with a frequency fs. Each point 
si in the sequence is represented as (xi, yi), i = 1, . . . 
N. Likewise, the signal is represented by a period 
(resolution) r=

1
fs

.

To start the MRBC, two points on the curve 
are taken to represent the signal si, s(i+1). The time 
interval between the points is given by

1
dt = x(i+1)– xi = — (11)

fs

the height between the points is 

  h = y(i+1)–  yi                                                         (12)

(Figure 5) the size of the box considered to 
cover the two points is dt, and the number of boxes 
required to cover the points is

� �h� �bi = (13)
dt

the total of resolution boxes r required to cover 
the curve is calculated by 

N–1
Br = � bi, i = 1, . . . N –1 (14)

i=0

and the procedure repeats for all the points on 
the curve. 

Figure 5. Identification of the elements si, s(i+1), h, dt
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For the next step of the MRBC, the repetition 

of the aforementioned procedure for multiple 

resolutions is considered to be r= 1
fs

, 2
fs

, . . . R
fs

,  

where R
fs

 is the maximum resolution that can be 

observed in the curve (Figure 6) (B. S. Raghavendra, 

y D. N. Dutt, 2010).

Figure 6. MRBC approximation for a sine wave.                                  

a) r=
1

fs

b) r=
2

fs

 c) r=
3

fs

(a)

(b)

(c)

3.     RESULTS

For this project a sample of 10 sessions from 
the work of Makeig was taken, each of which was 
randomly selected. The signals were converted to 
text format, and 10-second fractograms within the 
500-510 second range were generated for analysis 
(Figure 7). 

The algorithms were implemented using 
the Wolfram Languagein Mathematica V9.0.1.0. 
N = 2561 was considered the total number of 
points in the series for all the algorithms that were 

implemented. For the Higuchi algorithm m= 2 and k 
= �

N
2

�  were considered, and for the MRBC method, 
R = 1000 was considered. Table 1 shows the results 
obtained from the FD, and Table 2 shows the 
statistical variations obtained in each algorithm.

TABLE 1. FRACTAL DIMENSION COMPARISON BY 
STUDY SUBJECT

Study subject Higuchi Katz MRBC

140 1.00216 1.29736 1.01828

142 1.00222 1.46924 1.01964

319 1.00222 1.30689 1.01837

325 1.00228 1.53963 1.02011

309 1.00241 1.73597 1.02121

138 1.00222 1.34862 1.01873

318 1.00227 1.39007 1.01906

317 1.00229 1.36287 1.01884

314 1.00226 1.27650 1.01809

131 1.00197 1.16174 1.01685

TABLE 2. COMPARISON OF FD VARIATIONS

Method Variance Standard deviation

Higuchi 1.26444x10-8 0.000112448

Katz 0.0447103 0.160303

MRBC 1.43628x10-6 0.00119845

4.     CONCLUSIONS

Calculating the FD allowed us to determine 
the complexity of the EEG signals obtained. In the 
obtained results in Table 2, we can see that the FD 
in the Higuchi algorithm is maintained within the 
range of 1.000 < FD < 1.0003 in the Katz algorithm it 
is maintained within 1.0 < FD < 2.0 and in the MRBC 
method within 1.00 < FD < 1.03. The variation of the 
FD in the Higuchi and MRBC algorithms is sufficiently 
small to be able to consider the FD as just one, with 
the Higuchi algorithm being a good option chiefly for 
implementation in BCI systems. 
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Figure 7. Signals corresponding to channel 30 (O1) during the 500-510s range

Subject 140 Channel 30

(a)

Subject 142 Channel 30

(b)

Subject 319 Channel 30

(c)

Subject 325 Channel 30

(d)
Subject 309 Channel 30

(e)

Subject 138 Channel 30

(f )
Subject 318 Channel 30

(g)

Subject 317 Channel 30

(h)
Subject 314 Channel 30

(i)

Subject 131 Channel 30

(j)
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5.     DISCUSSION

In the experiment carried out for this paper, 
the ERPs were randomized for each participant. In 
order to have a better vision of the behavior of the 
FD algorithms in the EEG signals, the randomness of 
the events must be decreased just like the size of the 
fractograms, being smaller due to having a duration of 
less than one second. There are other algorithms for 
FD calculation—Bouligand-Minkowski, Grassberger-
Proccacia, the Hurst exponent, among others—
which need to be implemented and compared to 
have a more complete view. The works that follow 
will focus on the implementation of the algorithms 
presented in this paper under more controlled 
experimental conditions with regard to VEP and 
fractograms in the one-second range.Additionally, 
the Bouligand-Minkowski, Grassberger-Proccacia, 
and Hurst exponent algorithms will be implemented 
for comparison. 
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